Extensions 1→N→G→Q→1 with N=C32 and Q=D4⋊S3

Direct product G=N×Q with N=C32 and Q=D4⋊S3
dρLabelID
C32×D4⋊S372C3^2xD4:S3432,475

Semidirect products G=N:Q with N=C32 and Q=D4⋊S3
extensionφ:Q→Aut NdρLabelID
C321(D4⋊S3) = He32D8φ: D4⋊S3/C4D6 ⊆ Aut C32726+C3^2:1(D4:S3)432,79
C322(D4⋊S3) = He33D8φ: D4⋊S3/C4D6 ⊆ Aut C327212+C3^2:2(D4:S3)432,83
C323(D4⋊S3) = C33⋊D8φ: D4⋊S3/C6D4 ⊆ Aut C32244C3^2:3(D4:S3)432,582
C324(D4⋊S3) = He36D8φ: D4⋊S3/D4S3 ⊆ Aut C327212+C3^2:4(D4:S3)432,153
C325(D4⋊S3) = He37D8φ: D4⋊S3/D4S3 ⊆ Aut C32726C3^2:5(D4:S3)432,192
C326(D4⋊S3) = C337D8φ: D4⋊S3/C12C22 ⊆ Aut C3272C3^2:6(D4:S3)432,437
C327(D4⋊S3) = C339D8φ: D4⋊S3/C12C22 ⊆ Aut C32484C3^2:7(D4:S3)432,457
C328(D4⋊S3) = C3×C3⋊D24φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C32484C3^2:8(D4:S3)432,419
C329(D4⋊S3) = C338D8φ: D4⋊S3/C3⋊C8C2 ⊆ Aut C3272C3^2:9(D4:S3)432,438
C3210(D4⋊S3) = C3×C322D8φ: D4⋊S3/D12C2 ⊆ Aut C32484C3^2:10(D4:S3)432,418
C3211(D4⋊S3) = C336D8φ: D4⋊S3/D12C2 ⊆ Aut C32144C3^2:11(D4:S3)432,436
C3212(D4⋊S3) = C3×C327D8φ: D4⋊S3/C3×D4C2 ⊆ Aut C3272C3^2:12(D4:S3)432,491
C3213(D4⋊S3) = C3315D8φ: D4⋊S3/C3×D4C2 ⊆ Aut C32216C3^2:13(D4:S3)432,507

Non-split extensions G=N.Q with N=C32 and Q=D4⋊S3
extensionφ:Q→Aut NdρLabelID
C32.(D4⋊S3) = D36⋊C6φ: D4⋊S3/D4S3 ⊆ Aut C327212+C3^2.(D4:S3)432,155
C32.2(D4⋊S3) = D36⋊S3φ: D4⋊S3/C12C22 ⊆ Aut C321444C3^2.2(D4:S3)432,68
C32.3(D4⋊S3) = C9⋊D24φ: D4⋊S3/C12C22 ⊆ Aut C32724+C3^2.3(D4:S3)432,69
C32.4(D4⋊S3) = C3×D4⋊D9φ: D4⋊S3/C3×D4C2 ⊆ Aut C32724C3^2.4(D4:S3)432,149
C32.5(D4⋊S3) = C36.18D6φ: D4⋊S3/C3×D4C2 ⊆ Aut C32216C3^2.5(D4:S3)432,191

׿
×
𝔽